Functional connectivity between immune cells mediated by tunneling nanotubules.
نویسندگان
چکیده
Intercellular signals can be transmitted through neuronal synapses or through gap junctions, with the latter mediating transmission of calcium fluxes and small molecules between cells. We show here that a third form of communication between cells can be mediated by tunneling nanotubules (TNT). When myeloid-lineage dendritic cells and monocytes are triggered to flux calcium by chemical or mechanical stimulation, the signal can be propagated within seconds to other cells at distances hundreds of microns away via TNT. A complex and transient network of TNT is seen in live cells, with individual tubules exhibiting substantial variation in length and diameter. In addition to calcium fluxes, microinjected dye tracers can be transferred through these connections. Following TNT-mediated stimulation, spreading of lamellipodia occurs in dendritic cells characteristic of that seen during the phagocytic response to bacteria. These results demonstrate that nonneuronal cells can transmit signals to distant cells through a physically connected network.
منابع مشابه
O24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملEFFECT OF TOXOCARA CANIS SECOND STAGE LARVAE ON THE HOST IMMUNE SYSTEM
We have studied functional alteration of immunocytes in mice following inoculation of Toxocara canis second stage larvae. Results indicated depression of lymphocyte blastogenesis in response to concanavalin-A, phytohemagglutinin and allogeneic non B-cells; however, B-cell polyclonal activation was not affected as indicated by the production of total IgG. In contrast, frequency of antibody ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Immunity
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2005